

MATH ENRICHMENT PROGRAM PROBLEM SOLVING

WELCOME TO OUR ${ }^{\text {TT }}$ MEETING.

- We will meet weekly and have fun looking at different mathematical situations !!
- No homework !!!
- We only ask that you honestly engage in the lesson, participate, verbalize your thoughts, and join the discussions.
- Every meeting we will have 5 quick MC Check-in Questions and 5 quick MC Checkout Questions.

These are NOT tests or quizzes but a way for us to measure the learning process. Just be honest and do your very best.

CHECK IN

1) what is the value of $F(2)$
A) 15
B) 25
C) 55
D) 6

x	$F(x)$
1	15
6	65
2	25
5	55

CHECK IN

2) If $F(x)=55$ what is the value of x
A) 5
B) 0
C) 55
D) 6

x	$F(x)$
1	15
6	65
2	25
5	55

CHECK IN

3) Simplify the expression $X+2 X-5+12+3 X$
A) $3 X-17$
B) $3 x+7$
C) $6 X+7$
D) $6 X+7$

CHECK IN
4) $f(x)=\frac{x-3}{2}$, what is $f(11)$
A) 8
B) 2
C) 4
D) 7

CHECK IN

5) Fill in the blank,

160, 80, 40, 20, 10, \qquad

MAIN ACTIVITY- INTRODUCTION

http://nlvm.usu.edu/en/nav/frames asid 163 g 4 + $3 . h t m l ? o p e n=$ activities\&from=topic $+3 . h t m$ l

-How are you getting these numbers so fast? How do you know? -so if we had a shape $\# n$, can we predict its total number of tiles? Coming up with a generalization

CLOSE THE ROOF- HOW MANY TOTAL TILES ARE NEEDED FOR SHAPE \# 35

How can we organize our information?
Let's make a table

	n	Triangular tiles	Square tiles
1		Total	
2			
3			
4			
5			
6			
7			

HOW MANY TOTAL TILES ARE NEEDED FOR SHAPE \# N

- Do you see any patterns in the table? Share
- Can we predict for $\mathrm{n}=100$? , verbalize the rule you are using -
-Generalize the rule.

SUMMARY

Please write on the board
Write words you feel can represent some of what you did in this session?

